Kevin Mok
7 years ago
5 changed files with 424 additions and 224 deletions
-
3.gitignore
-
47database-design.txt
-
66spotifyvis/tests.py
-
289spotifyvis/utils.py
-
241spotifyvis/views.py
@ -0,0 +1,47 @@ |
|||||
|
UserLibrary as ul |
||||
|
- |
||||
|
UserID PK varchar |
||||
|
SavedTracks array # array of track ID's (varchar) |
||||
|
|
||||
|
ArtistName |
||||
|
- |
||||
|
TrackID PK varchar FK >- ul.SavedTracks |
||||
|
ArtistName varchar |
||||
|
|
||||
|
AudioFeatures |
||||
|
- |
||||
|
TrackID PK varchar FK >- ul.SavedTracks |
||||
|
Danceability decimal |
||||
|
Energy decimal |
||||
|
Loudness decimal |
||||
|
Speechiness decimal |
||||
|
Acousticness decimal |
||||
|
Instrumentalness decimal |
||||
|
Valence decimal |
||||
|
Tempo decimal |
||||
|
|
||||
|
Genre |
||||
|
- |
||||
|
TrackID PK varchar FK >- ul.SavedTracks |
||||
|
MainGenre NULL varchar |
||||
|
OtherGenres NULL array |
||||
|
|
||||
|
Popularity |
||||
|
- |
||||
|
TrackID PK varchar FK >- ul.SavedTracks |
||||
|
Popularity decimal |
||||
|
|
||||
|
Runtime |
||||
|
- |
||||
|
TrackID PK varchar FK >- ul.SavedTracks |
||||
|
Runtime smallint # seconds |
||||
|
|
||||
|
TrackName |
||||
|
- |
||||
|
TrackID PK varchar FK >- ul.SavedTracks |
||||
|
TrackName varchar |
||||
|
|
||||
|
Year |
||||
|
- |
||||
|
TrackID PK varchar FK >- ul.SavedTracks |
||||
|
Year smallint |
@ -1,3 +1,67 @@ |
|||||
from django.test import TestCase |
from django.test import TestCase |
||||
|
|
||||
|
from .views import update_std_dev |
||||
|
import math |
||||
# Create your tests here. |
# Create your tests here. |
||||
|
|
||||
|
class UpdateStdDevTest(TestCase): |
||||
|
|
||||
|
def test_two_data_points(self): |
||||
|
""" |
||||
|
tests if update_std_dev behaves correctly for two data points |
||||
|
""" |
||||
|
cur_mean = 5 |
||||
|
cur_std_dev = 0 |
||||
|
|
||||
|
new_mean, new_std_dev = update_std_dev(cur_mean, cur_std_dev, 10, 2) |
||||
|
|
||||
|
self.assertTrue(math.isclose(new_mean, 7.5, rel_tol=0.01)) |
||||
|
self.assertTrue(math.isclose(new_std_dev, 3.5355, rel_tol=0.01)) |
||||
|
|
||||
|
|
||||
|
def test_three_data_points(self): |
||||
|
""" |
||||
|
tests if update_std_dev behaves correctly for three data points |
||||
|
""" |
||||
|
cur_mean = 7.5 |
||||
|
cur_std_dev = 3.5355 |
||||
|
|
||||
|
new_mean, new_std_dev = update_std_dev(cur_mean, cur_std_dev, 15, 3) |
||||
|
|
||||
|
self.assertTrue(math.isclose(new_mean, 10, rel_tol=0.01)) |
||||
|
self.assertTrue(math.isclose(new_std_dev, 5, rel_tol=0.01)) |
||||
|
|
||||
|
|
||||
|
def test_four_data_points(self): |
||||
|
""" |
||||
|
tests if update_std_dev behaves correctly for four data points |
||||
|
""" |
||||
|
cur_mean = 10 |
||||
|
cur_std_dev = 5 |
||||
|
|
||||
|
new_mean, new_std_dev = update_std_dev(cur_mean, cur_std_dev, 20, 4) |
||||
|
self.assertTrue(math.isclose(new_mean, 12.5, rel_tol=0.01)) |
||||
|
self.assertTrue(math.isclose(new_std_dev, 6.455, rel_tol=0.01)) |
||||
|
|
||||
|
|
||||
|
def test_five_data_points(self): |
||||
|
""" |
||||
|
tests if update_std_dev behaves correctly for five data points |
||||
|
""" |
||||
|
cur_mean = 12.5 |
||||
|
cur_std_dev = 6.455 |
||||
|
|
||||
|
new_mean, new_std_dev = update_std_dev(cur_mean, cur_std_dev, 63, 5) |
||||
|
self.assertTrue(math.isclose(new_mean, 22.6, rel_tol=0.01)) |
||||
|
self.assertTrue(math.isclose(new_std_dev, 23.2658, rel_tol=0.01)) |
||||
|
|
||||
|
|
||||
|
def test_sixteen_data_points(self): |
||||
|
""" |
||||
|
tests if update_std_dev behaves correctly for sixteen data points |
||||
|
""" |
||||
|
cur_mean = 0.4441 |
||||
|
cur_std_dev = 0.2855 |
||||
|
|
||||
|
new_mean, new_std_dev = update_std_dev(cur_mean, cur_std_dev, 0.7361, 16) |
||||
|
self.assertTrue(math.isclose(new_mean, 0.4624, rel_tol=0.01)) |
||||
|
self.assertTrue(math.isclose(new_std_dev, 0.2853, rel_tol=0.01)) |
@ -0,0 +1,289 @@ |
|||||
|
import requests |
||||
|
import math |
||||
|
import pprint |
||||
|
|
||||
|
# parse_library {{{ # |
||||
|
|
||||
|
def parse_library(headers, tracks, library_stats): |
||||
|
"""Scans user's library for certain number of tracks to update library_stats with. |
||||
|
|
||||
|
:headers: For API call. |
||||
|
:tracks: Number of tracks to get from user's library. |
||||
|
:library_stats: Dictionary containing the data mined from user's library |
||||
|
|
||||
|
:returns: None |
||||
|
|
||||
|
""" |
||||
|
# TODO: implement importing entire library with 0 as tracks param |
||||
|
# number of tracks to get with each call |
||||
|
limit = 5 |
||||
|
# keeps track of point to get songs from |
||||
|
offset = 0 |
||||
|
payload = {'limit': str(limit)} |
||||
|
for _ in range(0, tracks, limit): |
||||
|
payload['offset'] = str(offset) |
||||
|
saved_tracks_response = requests.get('https://api.spotify.com/v1/me/tracks', headers=headers, params=payload).json() |
||||
|
num_samples = offset |
||||
|
for track_dict in saved_tracks_response['items']: |
||||
|
# Track the number of samples for calculating |
||||
|
# audio feature averages and standard deviations on the fly |
||||
|
num_samples += 1 |
||||
|
get_track_info(track_dict['track'], library_stats, num_samples) |
||||
|
# get_genre(headers, track_dict['track']['album']['id']) |
||||
|
audio_features_dict = get_audio_features(headers, track_dict['track']['id']) |
||||
|
for feature, feature_data in audio_features_dict.items(): |
||||
|
update_audio_feature_stats(feature, feature_data, num_samples, library_stats) |
||||
|
for artist_dict in track_dict['track']['artists']: |
||||
|
increase_artist_count(headers, artist_dict['name'], artist_dict['id'], library_stats) |
||||
|
# calculates num_songs with offset + songs retrieved |
||||
|
library_stats['num_songs'] = offset + len(saved_tracks_response['items']) |
||||
|
offset += limit |
||||
|
calculate_genres_from_artists(headers, library_stats) |
||||
|
pprint.pprint(library_stats) |
||||
|
|
||||
|
# }}} parse_library # |
||||
|
|
||||
|
def get_audio_features(headers, track_id): |
||||
|
"""Returns the audio features of a soundtrack |
||||
|
|
||||
|
Args: |
||||
|
headers: headers containing the API token |
||||
|
track_id: the id of the soundtrack, needed to query the Spotify API |
||||
|
|
||||
|
Returns: |
||||
|
A dictionary with the features as its keys |
||||
|
""" |
||||
|
|
||||
|
response = requests.get("https://api.spotify.com/v1/audio-features/{}".format(track_id), headers = headers).json() |
||||
|
features_dict = {} |
||||
|
|
||||
|
# Data that we don't need |
||||
|
useless_keys = [ |
||||
|
"key", "mode", "type", "liveness", "id", "uri", "track_href", "analysis_url", "time_signature", |
||||
|
] |
||||
|
for key, val in response.items(): |
||||
|
if key not in useless_keys: |
||||
|
features_dict[key] = val |
||||
|
|
||||
|
return features_dict |
||||
|
|
||||
|
|
||||
|
def update_std_dev(cur_mean, cur_std_dev, new_data_point, sample_size): |
||||
|
"""Calculates the standard deviation for a sample without storing all data points |
||||
|
|
||||
|
Args: |
||||
|
cur_mean: the current mean for N = (sample_size - 1) |
||||
|
cur_std_dev: the current standard deviation for N = (sample_size - 1) |
||||
|
new_data_point: a new data point |
||||
|
sample_size: sample size including the new data point |
||||
|
|
||||
|
Returns: |
||||
|
(new_mean, new_std_dev) |
||||
|
""" |
||||
|
# This is an implementation of Welford's method |
||||
|
# http://jonisalonen.com/2013/deriving-welfords-method-for-computing-variance/ |
||||
|
new_mean = ((sample_size - 1) * cur_mean + new_data_point) / sample_size |
||||
|
delta_variance = (new_data_point - new_mean) * (new_data_point - cur_mean) |
||||
|
new_std_dev = math.sqrt( |
||||
|
(math.pow(cur_std_dev, 2) * (sample_size - 2) + delta_variance) / ( |
||||
|
sample_size - 1 |
||||
|
)) |
||||
|
return new_mean, new_std_dev |
||||
|
|
||||
|
|
||||
|
def update_audio_feature_stats(feature, new_data_point, sample_size, library_stats): |
||||
|
"""Updates the audio feature statistics in library_stats |
||||
|
|
||||
|
Args: |
||||
|
feature: the audio feature to be updated (string) |
||||
|
new_data_point: new data to update the stats with |
||||
|
sample_size: sample size including the new data point |
||||
|
library_stats Dictionary containing the data mined from user's Spotify library |
||||
|
|
||||
|
|
||||
|
Returns: |
||||
|
None |
||||
|
""" |
||||
|
# first time the feature is considered |
||||
|
if sample_size < 2: |
||||
|
library_stats['audio_features'][feature] = { |
||||
|
"average": new_data_point, |
||||
|
"std_dev": 0, |
||||
|
} |
||||
|
else: |
||||
|
cur_mean = library_stats['audio_features'][feature]['average'] |
||||
|
cur_std_dev = library_stats['audio_features'][feature]['std_dev'] |
||||
|
new_mean, new_std_dev = update_std_dev(cur_mean, cur_std_dev, new_data_point, sample_size) |
||||
|
|
||||
|
library_stats['audio_features'][feature] = { |
||||
|
"average": new_mean, |
||||
|
"std_dev": new_std_dev |
||||
|
} |
||||
|
|
||||
|
|
||||
|
# increase_nested_key {{{ # |
||||
|
|
||||
|
def increase_nested_key(top_key, nested_key, library_stats, amount=1): |
||||
|
"""Increases count for the value of library_stats[top_key][nested_key]. Checks if nested_key exists already and takes |
||||
|
appropriate action. |
||||
|
|
||||
|
:top_key: First key of library_stats. |
||||
|
:nested_key: Key in top_key's dict for which we want to increase value of. |
||||
|
:library_stats: Dictionary containing the data mined from user's Spotify library |
||||
|
|
||||
|
:returns: None |
||||
|
|
||||
|
""" |
||||
|
if nested_key not in library_stats[top_key]: |
||||
|
library_stats[top_key][nested_key] = amount |
||||
|
else: |
||||
|
library_stats[top_key][nested_key] += amount |
||||
|
|
||||
|
# }}} increase_nested_key # |
||||
|
|
||||
|
# increase_artist_count {{{ # |
||||
|
|
||||
|
def increase_artist_count(headers, artist_name, artist_id, library_stats): |
||||
|
"""Increases count for artist in library_stats and stores the artist_id. |
||||
|
|
||||
|
:headers: For making the API call. |
||||
|
:artist_name: Artist to increase count for. |
||||
|
:artist_id: The Spotify ID for the artist. |
||||
|
:library_stats: Dictionary containing the data mined from user's Spotify library |
||||
|
|
||||
|
:returns: None |
||||
|
|
||||
|
""" |
||||
|
if artist_name not in library_stats['artists']: |
||||
|
library_stats['artists'][artist_name] = {} |
||||
|
library_stats['artists'][artist_name]['count'] = 1 |
||||
|
library_stats['artists'][artist_name]['id'] = artist_id |
||||
|
else: |
||||
|
library_stats['artists'][artist_name]['count'] += 1 |
||||
|
|
||||
|
# }}} increase_artist_count # |
||||
|
|
||||
|
def update_popularity_stats(new_data_point, library_stats, sample_size): |
||||
|
"""Updates the popularity statistics in library_stats |
||||
|
|
||||
|
Args: |
||||
|
new_data_point: new data to update the popularity stats with |
||||
|
library_stats: Dictionary containing data mined from user's Spotify library |
||||
|
sample_size: The sample size including the new data |
||||
|
|
||||
|
Returns: |
||||
|
None |
||||
|
""" |
||||
|
if sample_size < 2: |
||||
|
library_stats['popularity'] = { |
||||
|
"average": new_data_point, |
||||
|
"std_dev": 0, |
||||
|
} |
||||
|
else : |
||||
|
cur_mean_popularity = library_stats['popularity']['average'] |
||||
|
cur_popularity_stdev = library_stats['popularity']['std_dev'] |
||||
|
new_mean, new_std_dev = update_std_dev( |
||||
|
cur_mean_popularity, cur_popularity_stdev, new_data_point, sample_size) |
||||
|
library_stats['popularity'] = { |
||||
|
"average": new_mean, |
||||
|
"std_dev": new_std_dev, |
||||
|
} |
||||
|
|
||||
|
# get_track_info {{{ # |
||||
|
|
||||
|
def get_track_info(track_dict, library_stats, sample_size): |
||||
|
"""Get all the info from the track_dict directly returned by the API call in parse_library. |
||||
|
|
||||
|
:track_dict: Dict returned from the API call containing the track info. |
||||
|
:library_stats: Dictionary containing the data mined from user's Spotify library |
||||
|
:sample_size: The sample size so far including this track |
||||
|
|
||||
|
:returns: None |
||||
|
|
||||
|
""" |
||||
|
# popularity |
||||
|
update_popularity_stats(track_dict['popularity'], library_stats, sample_size) |
||||
|
|
||||
|
# year |
||||
|
year_released = track_dict['album']['release_date'].split('-')[0] |
||||
|
increase_nested_key('year_released', year_released, library_stats) |
||||
|
|
||||
|
# artist |
||||
|
# artist_names = [artist['name'] for artist in track_dict['artists']] |
||||
|
# for artist_name in artist_names: |
||||
|
# increase_nested_key('artists', artist_name) |
||||
|
|
||||
|
# runtime |
||||
|
library_stats['total_runtime'] += float(track_dict['duration_ms']) / (1000 * 60) |
||||
|
|
||||
|
# }}} get_track_info # |
||||
|
|
||||
|
# calculate_genres_from_artists {{{ # |
||||
|
|
||||
|
def calculate_genres_from_artists(headers, library_stats): |
||||
|
"""Tallies up genre counts based on artists in library_stats. |
||||
|
|
||||
|
:headers: For making the API call. |
||||
|
:library_stats: Dictionary containing the data mined from user's Spotify library |
||||
|
|
||||
|
:returns: None |
||||
|
|
||||
|
""" |
||||
|
for artist_entry in library_stats['artists'].values(): |
||||
|
artist_response = requests.get('https://api.spotify.com/v1/artists/' + artist_entry['id'], headers=headers).json() |
||||
|
# increase each genre count by artist count |
||||
|
for genre in artist_response['genres']: |
||||
|
increase_nested_key('genres', genre, library_stats, artist_entry['count']) |
||||
|
|
||||
|
# }}} calculate_genres_from_artists # |
||||
|
|
||||
|
def process_library_stats(library_stats): |
||||
|
"""Processes library_stats into format more suitable for D3 consumption |
||||
|
|
||||
|
Args: |
||||
|
library_stats: Dictionary containing the data mined from user's Spotify library |
||||
|
|
||||
|
Returns: |
||||
|
A new dictionary that contains the data in library_stats, in a format more suitable for D3 consumption |
||||
|
""" |
||||
|
processed_library_stats = {} |
||||
|
for key in library_stats: |
||||
|
if key == 'artists' or key == 'genres' or key == 'year_released': |
||||
|
for inner_key in library_stats[key]: |
||||
|
if key not in processed_library_stats: |
||||
|
processed_library_stats[key] = [] |
||||
|
processed_item_key = '' # identifier key for each dict in the list |
||||
|
count = 0 |
||||
|
if 'artist' in key: |
||||
|
processed_item_key = 'name' |
||||
|
count = library_stats[key][inner_key]['count'] |
||||
|
elif 'genre' in key: |
||||
|
processed_item_key = 'genre' |
||||
|
count = library_stats[key][inner_key] |
||||
|
else: |
||||
|
processed_item_key = 'year' |
||||
|
count = library_stats[key][inner_key] |
||||
|
|
||||
|
processed_library_stats[key].append({ |
||||
|
processed_item_key: inner_key, |
||||
|
"count": count |
||||
|
}) |
||||
|
elif key == 'audio_features': |
||||
|
for audio_feature in library_stats[key]: |
||||
|
if 'audio_features' not in processed_library_stats: |
||||
|
processed_library_stats['audio_features'] = [] |
||||
|
processed_library_stats['audio_features'].append({ |
||||
|
'feature': audio_feature, |
||||
|
'average': library_stats[key][audio_feature]['average'], |
||||
|
'std_dev': library_stats[key][audio_feature]['std_dev'] |
||||
|
}) |
||||
|
# TODO: Not sure about final form for 'popularity' |
||||
|
# elif key == 'popularity': |
||||
|
# processed_library_stats[key] = [] |
||||
|
# processed_library_stats[key].append({ |
||||
|
|
||||
|
# }) |
||||
|
elif key == 'num_songs' or key == 'total_runtime' or key == 'popularity': |
||||
|
processed_library_stats[key] = library_stats[key] |
||||
|
|
||||
|
return processed_library_stats |
Write
Preview
Loading…
Cancel
Save
Reference in new issue