|
|
@ -1,3 +1,5 @@ |
|
|
|
# imports {{{ # |
|
|
|
|
|
|
|
from django.shortcuts import render, redirect |
|
|
|
from django.http import HttpResponse, HttpResponseBadRequest |
|
|
|
import math |
|
|
@ -9,9 +11,15 @@ import json |
|
|
|
import pprint |
|
|
|
from datetime import datetime |
|
|
|
|
|
|
|
# }}} imports # |
|
|
|
|
|
|
|
# global vars {{{ # |
|
|
|
|
|
|
|
TIME_FORMAT = '%Y-%m-%d-%H-%M-%S' |
|
|
|
library_stats = {"audio_features":{}, "genres":{}, "year_released":{}, "artists":{}, "num_songs":0, "popularity":[], "total_runtime":0} |
|
|
|
|
|
|
|
# }}} global vars # |
|
|
|
|
|
|
|
# generate_random_string {{{ # |
|
|
|
|
|
|
|
def generate_random_string(length): |
|
|
@ -131,14 +139,15 @@ def user_data(request): |
|
|
|
'Authorization': auth_token_str |
|
|
|
} |
|
|
|
|
|
|
|
tracks_to_query = 5 |
|
|
|
parse_library(headers, tracks_to_query) |
|
|
|
|
|
|
|
user_data_response = requests.get('https://api.spotify.com/v1/me', headers = headers).json() |
|
|
|
context = { |
|
|
|
'user_name': user_data_response['display_name'], |
|
|
|
'id': user_data_response['id'], |
|
|
|
'genre_dict': library_stats['genres'] |
|
|
|
} |
|
|
|
|
|
|
|
tracks_to_query = 5 |
|
|
|
parse_library(headers, tracks_to_query) |
|
|
|
return render(request, 'spotifyvis/user_data.html', context) |
|
|
|
|
|
|
|
# }}} user_data # |
|
|
@ -182,6 +191,8 @@ def parse_library(headers, tracks): |
|
|
|
|
|
|
|
# }}} parse_library # |
|
|
|
|
|
|
|
# get_audio_features {{{ # |
|
|
|
|
|
|
|
def get_audio_features(headers, track_id): |
|
|
|
"""Returns the audio features of a soundtrack |
|
|
|
|
|
|
@ -206,6 +217,9 @@ def get_audio_features(headers, track_id): |
|
|
|
|
|
|
|
return features_dict |
|
|
|
|
|
|
|
# }}} get_audio_features # |
|
|
|
|
|
|
|
# update_std_dev {{{ # |
|
|
|
|
|
|
|
def update_std_dev(cur_mean, cur_std_dev, new_data_point, sample_size): |
|
|
|
"""Calculates the standard deviation for a sample without storing all data points |
|
|
@ -229,6 +243,9 @@ def update_std_dev(cur_mean, cur_std_dev, new_data_point, sample_size): |
|
|
|
)) |
|
|
|
return new_mean, new_std_dev |
|
|
|
|
|
|
|
# }}} update_std_dev # |
|
|
|
|
|
|
|
# update_audio_feature_stats {{{ # |
|
|
|
|
|
|
|
def update_audio_feature_stats(feature, new_data_point, sample_size): |
|
|
|
"""Updates the audio feature statistics in library_stats |
|
|
@ -255,6 +272,7 @@ def update_audio_feature_stats(feature, new_data_point, sample_size): |
|
|
|
library_stats['audio_features'][feature]['average'] = new_mean |
|
|
|
library_stats['audio_features'][feature]['std_dev'] = new_std_dev |
|
|
|
|
|
|
|
# }}} update_audio_feature_stats # |
|
|
|
|
|
|
|
# increase_nested_key {{{ # |
|
|
|
|
|
|
@ -331,8 +349,16 @@ def calculate_genres_from_artists(headers): |
|
|
|
""" |
|
|
|
for artist_entry in library_stats['artists'].values(): |
|
|
|
artist_response = requests.get('https://api.spotify.com/v1/artists/' + artist_entry['id'], headers=headers).json() |
|
|
|
|
|
|
|
# increase each genre count by artist count |
|
|
|
for genre in artist_response['genres']: |
|
|
|
increase_nested_key('genres', genre, artist_entry['count']) |
|
|
|
# for genre in artist_response['genres']: |
|
|
|
# print(genre, end='') |
|
|
|
# increase_nested_key('genres', genre, artist_entry['count']) |
|
|
|
# print('') |
|
|
|
|
|
|
|
# only use first genre for simplicity right now |
|
|
|
if len(artist_response['genres']) > 0: |
|
|
|
print(artist_response['genres'][0]) |
|
|
|
increase_nested_key('genres', artist_response['genres'][0], artist_entry['count']) |
|
|
|
|
|
|
|
# }}} calculate_genres_from_artists # |