Browse Source
			
			
			Merge pull request #23 from chrisshyi/master
			
				
		Merge pull request #23 from chrisshyi/master
	
		
	
			
				Refactor helper functions in views.pymaster
				
				  
				  No known key found for this signature in database
				  
				  	
						GPG Key ID: 4AEE18F83AFDEB23
				  	
				  
				
			
		
		
		
	
				 2 changed files with 308 additions and 196 deletions
			
			
		@ -0,0 +1,289 @@ | 
			
		|||||
 | 
				import requests | 
			
		||||
 | 
				import math | 
			
		||||
 | 
				import pprint | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				#  parse_library {{{ #  | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				def parse_library(headers, tracks, library_stats): | 
			
		||||
 | 
				    """Scans user's library for certain number of tracks to update library_stats with. | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    :headers: For API call. | 
			
		||||
 | 
				    :tracks: Number of tracks to get from user's library. | 
			
		||||
 | 
				    :library_stats: Dictionary containing the data mined from user's library  | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    :returns: None | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    """ | 
			
		||||
 | 
				    #  TODO: implement importing entire library with 0 as tracks param | 
			
		||||
 | 
				    # number of tracks to get with each call | 
			
		||||
 | 
				    limit = 5 | 
			
		||||
 | 
				    # keeps track of point to get songs from | 
			
		||||
 | 
				    offset = 0 | 
			
		||||
 | 
				    payload = {'limit': str(limit)} | 
			
		||||
 | 
				    for _ in range(0, tracks, limit): | 
			
		||||
 | 
				        payload['offset'] = str(offset) | 
			
		||||
 | 
				        saved_tracks_response = requests.get('https://api.spotify.com/v1/me/tracks', headers=headers, params=payload).json() | 
			
		||||
 | 
				        num_samples = offset | 
			
		||||
 | 
				        for track_dict in saved_tracks_response['items']: | 
			
		||||
 | 
				            # Track the number of samples for calculating | 
			
		||||
 | 
				            # audio feature averages and standard deviations on the fly | 
			
		||||
 | 
				            num_samples += 1  | 
			
		||||
 | 
				            get_track_info(track_dict['track'], library_stats, num_samples) | 
			
		||||
 | 
				            #  get_genre(headers, track_dict['track']['album']['id']) | 
			
		||||
 | 
				            audio_features_dict = get_audio_features(headers, track_dict['track']['id']) | 
			
		||||
 | 
				            for feature, feature_data in audio_features_dict.items(): | 
			
		||||
 | 
				                update_audio_feature_stats(feature, feature_data, num_samples, library_stats) | 
			
		||||
 | 
				            for artist_dict in track_dict['track']['artists']: | 
			
		||||
 | 
				                increase_artist_count(headers, artist_dict['name'], artist_dict['id'], library_stats) | 
			
		||||
 | 
				        # calculates num_songs with offset + songs retrieved | 
			
		||||
 | 
				        library_stats['num_songs'] = offset + len(saved_tracks_response['items']) | 
			
		||||
 | 
				        offset += limit | 
			
		||||
 | 
				    calculate_genres_from_artists(headers, library_stats) | 
			
		||||
 | 
				    pprint.pprint(library_stats) | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				#  }}} parse_library #  | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				def get_audio_features(headers, track_id): | 
			
		||||
 | 
				    """Returns the audio features of a soundtrack | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    Args: | 
			
		||||
 | 
				        headers: headers containing the API token | 
			
		||||
 | 
				        track_id: the id of the soundtrack, needed to query the Spotify API | 
			
		||||
 | 
				         | 
			
		||||
 | 
				    Returns: | 
			
		||||
 | 
				        A dictionary with the features as its keys | 
			
		||||
 | 
				    """ | 
			
		||||
 | 
				     | 
			
		||||
 | 
				    response = requests.get("https://api.spotify.com/v1/audio-features/{}".format(track_id), headers = headers).json() | 
			
		||||
 | 
				    features_dict = {} | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    # Data that we don't need | 
			
		||||
 | 
				    useless_keys = [  | 
			
		||||
 | 
				        "key", "mode", "type", "liveness", "id", "uri", "track_href", "analysis_url", "time_signature", | 
			
		||||
 | 
				    ] | 
			
		||||
 | 
				    for key, val in response.items(): | 
			
		||||
 | 
				        if key not in useless_keys: | 
			
		||||
 | 
				            features_dict[key] = val | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    return features_dict | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				def update_std_dev(cur_mean, cur_std_dev, new_data_point, sample_size): | 
			
		||||
 | 
				    """Calculates the standard deviation for a sample without storing all data points | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    Args: | 
			
		||||
 | 
				        cur_mean: the current mean for N = (sample_size - 1) | 
			
		||||
 | 
				        cur_std_dev: the current standard deviation for N = (sample_size - 1) | 
			
		||||
 | 
				        new_data_point: a new data point | 
			
		||||
 | 
				        sample_size: sample size including the new data point | 
			
		||||
 | 
				     | 
			
		||||
 | 
				    Returns: | 
			
		||||
 | 
				        (new_mean, new_std_dev) | 
			
		||||
 | 
				    """ | 
			
		||||
 | 
				    # This is an implementation of Welford's method | 
			
		||||
 | 
				    # http://jonisalonen.com/2013/deriving-welfords-method-for-computing-variance/ | 
			
		||||
 | 
				    new_mean = ((sample_size - 1) * cur_mean + new_data_point) / sample_size | 
			
		||||
 | 
				    delta_variance = (new_data_point - new_mean) * (new_data_point - cur_mean) | 
			
		||||
 | 
				    new_std_dev = math.sqrt( | 
			
		||||
 | 
				        (math.pow(cur_std_dev, 2) * (sample_size - 2) + delta_variance) / ( | 
			
		||||
 | 
				        sample_size - 1 | 
			
		||||
 | 
				    )) | 
			
		||||
 | 
				    return new_mean, new_std_dev | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				def update_audio_feature_stats(feature, new_data_point, sample_size, library_stats): | 
			
		||||
 | 
				    """Updates the audio feature statistics in library_stats | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    Args: | 
			
		||||
 | 
				        feature: the audio feature to be updated (string) | 
			
		||||
 | 
				        new_data_point: new data to update the stats with | 
			
		||||
 | 
				        sample_size: sample size including the new data point | 
			
		||||
 | 
				        library_stats Dictionary containing the data mined from user's Spotify library | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				     | 
			
		||||
 | 
				    Returns: | 
			
		||||
 | 
				        None | 
			
		||||
 | 
				    """ | 
			
		||||
 | 
				    # first time the feature is considered | 
			
		||||
 | 
				    if sample_size < 2: | 
			
		||||
 | 
				        library_stats['audio_features'][feature] = { | 
			
		||||
 | 
				            "average": new_data_point, | 
			
		||||
 | 
				            "std_dev": 0, | 
			
		||||
 | 
				        } | 
			
		||||
 | 
				    else: | 
			
		||||
 | 
				        cur_mean = library_stats['audio_features'][feature]['average'] | 
			
		||||
 | 
				        cur_std_dev = library_stats['audio_features'][feature]['std_dev'] | 
			
		||||
 | 
				        new_mean, new_std_dev = update_std_dev(cur_mean, cur_std_dev, new_data_point, sample_size) | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				        library_stats['audio_features'][feature] = { | 
			
		||||
 | 
				            "average": new_mean, | 
			
		||||
 | 
				            "std_dev": new_std_dev | 
			
		||||
 | 
				        } | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				#  increase_nested_key {{{ #  | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				def increase_nested_key(top_key, nested_key, library_stats, amount=1): | 
			
		||||
 | 
				    """Increases count for the value of library_stats[top_key][nested_key]. Checks if nested_key exists already and takes | 
			
		||||
 | 
				    appropriate action. | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    :top_key: First key of library_stats. | 
			
		||||
 | 
				    :nested_key: Key in top_key's dict for which we want to increase value of. | 
			
		||||
 | 
				    :library_stats: Dictionary containing the data mined from user's Spotify library | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    :returns: None | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    """ | 
			
		||||
 | 
				    if nested_key not in library_stats[top_key]: | 
			
		||||
 | 
				        library_stats[top_key][nested_key] = amount | 
			
		||||
 | 
				    else: | 
			
		||||
 | 
				        library_stats[top_key][nested_key] += amount | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				#  }}} increase_nested_key #  | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				#  increase_artist_count {{{ #  | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				def increase_artist_count(headers, artist_name, artist_id, library_stats): | 
			
		||||
 | 
				    """Increases count for artist in library_stats and stores the artist_id.  | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    :headers: For making the API call. | 
			
		||||
 | 
				    :artist_name: Artist to increase count for. | 
			
		||||
 | 
				    :artist_id: The Spotify ID for the artist. | 
			
		||||
 | 
				    :library_stats: Dictionary containing the data mined from user's Spotify library | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    :returns: None | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    """ | 
			
		||||
 | 
				    if artist_name not in library_stats['artists']: | 
			
		||||
 | 
				        library_stats['artists'][artist_name] = {} | 
			
		||||
 | 
				        library_stats['artists'][artist_name]['count'] = 1 | 
			
		||||
 | 
				        library_stats['artists'][artist_name]['id'] = artist_id | 
			
		||||
 | 
				    else: | 
			
		||||
 | 
				        library_stats['artists'][artist_name]['count'] += 1 | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				#  }}} increase_artist_count #  | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				def update_popularity_stats(new_data_point, library_stats, sample_size): | 
			
		||||
 | 
				    """Updates the popularity statistics in library_stats | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    Args: | 
			
		||||
 | 
				        new_data_point: new data to update the popularity stats with | 
			
		||||
 | 
				        library_stats: Dictionary containing data mined from user's Spotify library | 
			
		||||
 | 
				        sample_size: The sample size including the new data | 
			
		||||
 | 
				     | 
			
		||||
 | 
				    Returns: | 
			
		||||
 | 
				        None | 
			
		||||
 | 
				    """ | 
			
		||||
 | 
				    if sample_size < 2: | 
			
		||||
 | 
				        library_stats['popularity'] = { | 
			
		||||
 | 
				            "average": new_data_point, | 
			
		||||
 | 
				            "std_dev": 0, | 
			
		||||
 | 
				        } | 
			
		||||
 | 
				    else : | 
			
		||||
 | 
				        cur_mean_popularity = library_stats['popularity']['average'] | 
			
		||||
 | 
				        cur_popularity_stdev = library_stats['popularity']['std_dev'] | 
			
		||||
 | 
				        new_mean, new_std_dev = update_std_dev( | 
			
		||||
 | 
				            cur_mean_popularity, cur_popularity_stdev, new_data_point, sample_size) | 
			
		||||
 | 
				        library_stats['popularity'] = { | 
			
		||||
 | 
				            "average": new_mean, | 
			
		||||
 | 
				            "std_dev": new_std_dev, | 
			
		||||
 | 
				        } | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				#  get_track_info {{{ #  | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				def get_track_info(track_dict, library_stats, sample_size): | 
			
		||||
 | 
				    """Get all the info from the track_dict directly returned by the API call in parse_library. | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    :track_dict: Dict returned from the API call containing the track info. | 
			
		||||
 | 
				    :library_stats: Dictionary containing the data mined from user's Spotify library | 
			
		||||
 | 
				    :sample_size: The sample size so far including this track | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    :returns: None | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    """ | 
			
		||||
 | 
				    # popularity | 
			
		||||
 | 
				    update_popularity_stats(track_dict['popularity'], library_stats, sample_size) | 
			
		||||
 | 
				         | 
			
		||||
 | 
				    # year | 
			
		||||
 | 
				    year_released = track_dict['album']['release_date'].split('-')[0] | 
			
		||||
 | 
				    increase_nested_key('year_released', year_released, library_stats) | 
			
		||||
 | 
				     | 
			
		||||
 | 
				    # artist | 
			
		||||
 | 
				    #  artist_names = [artist['name'] for artist in track_dict['artists']] | 
			
		||||
 | 
				    #  for artist_name in artist_names: | 
			
		||||
 | 
				        #  increase_nested_key('artists', artist_name) | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    # runtime | 
			
		||||
 | 
				    library_stats['total_runtime'] += float(track_dict['duration_ms']) / (1000 * 60) | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				#  }}} get_track_info #  | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				#  calculate_genres_from_artists {{{ #  | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				def calculate_genres_from_artists(headers, library_stats): | 
			
		||||
 | 
				    """Tallies up genre counts based on artists in library_stats. | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    :headers: For making the API call. | 
			
		||||
 | 
				    :library_stats: Dictionary containing the data mined from user's Spotify library | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    :returns: None | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    """ | 
			
		||||
 | 
				    for artist_entry in library_stats['artists'].values(): | 
			
		||||
 | 
				        artist_response = requests.get('https://api.spotify.com/v1/artists/' + artist_entry['id'], headers=headers).json() | 
			
		||||
 | 
				        # increase each genre count by artist count | 
			
		||||
 | 
				        for genre in artist_response['genres']: | 
			
		||||
 | 
				            increase_nested_key('genres', genre, library_stats, artist_entry['count']) | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				#  }}} calculate_genres_from_artists #  | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				def process_library_stats(library_stats): | 
			
		||||
 | 
				    """Processes library_stats into format more suitable for D3 consumption | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				    Args: | 
			
		||||
 | 
				        library_stats: Dictionary containing the data mined from user's Spotify library | 
			
		||||
 | 
				     | 
			
		||||
 | 
				    Returns: | 
			
		||||
 | 
				        A new dictionary that contains the data in library_stats, in a format more suitable for D3 consumption | 
			
		||||
 | 
				    """ | 
			
		||||
 | 
				    processed_library_stats = {} | 
			
		||||
 | 
				    for key in library_stats: | 
			
		||||
 | 
				        if key == 'artists' or key == 'genres' or key == 'year_released': | 
			
		||||
 | 
				            for inner_key in library_stats[key]: | 
			
		||||
 | 
				                if key not in processed_library_stats: | 
			
		||||
 | 
				                    processed_library_stats[key] = [] | 
			
		||||
 | 
				                processed_item_key = '' # identifier key for each dict in the list | 
			
		||||
 | 
				                count = 0 | 
			
		||||
 | 
				                if 'artist' in key: | 
			
		||||
 | 
				                    processed_item_key = 'name' | 
			
		||||
 | 
				                    count = library_stats[key][inner_key]['count'] | 
			
		||||
 | 
				                elif 'genre' in key: | 
			
		||||
 | 
				                    processed_item_key = 'genre' | 
			
		||||
 | 
				                    count = library_stats[key][inner_key] | 
			
		||||
 | 
				                else: | 
			
		||||
 | 
				                    processed_item_key = 'year' | 
			
		||||
 | 
				                    count = library_stats[key][inner_key] | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				                processed_library_stats[key].append({ | 
			
		||||
 | 
				                    processed_item_key: inner_key, | 
			
		||||
 | 
				                    "count": count | 
			
		||||
 | 
				                }) | 
			
		||||
 | 
				        elif key == 'audio_features': | 
			
		||||
 | 
				            for audio_feature in library_stats[key]: | 
			
		||||
 | 
				                if 'audio_features' not in processed_library_stats: | 
			
		||||
 | 
				                    processed_library_stats['audio_features'] = [] | 
			
		||||
 | 
				                processed_library_stats['audio_features'].append({ | 
			
		||||
 | 
				                    'feature': audio_feature, | 
			
		||||
 | 
				                    'average': library_stats[key][audio_feature]['average'], | 
			
		||||
 | 
				                    'std_dev': library_stats[key][audio_feature]['std_dev'] | 
			
		||||
 | 
				                }) | 
			
		||||
 | 
				        # TODO: Not sure about final form for 'popularity' | 
			
		||||
 | 
				        # elif key == 'popularity': | 
			
		||||
 | 
				        #     processed_library_stats[key] = [] | 
			
		||||
 | 
				        #     processed_library_stats[key].append({ | 
			
		||||
 | 
				
 | 
			
		||||
 | 
				        #     }) | 
			
		||||
 | 
				        elif key == 'num_songs' or key == 'total_runtime' or key == 'popularity': | 
			
		||||
 | 
				            processed_library_stats[key] = library_stats[key] | 
			
		||||
 | 
				     | 
			
		||||
 | 
				    return processed_library_stats | 
			
		||||
						Write
						Preview
					
					
					Loading…
					
					Cancel
						Save
					
		Reference in new issue