You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
289 lines
11 KiB
289 lines
11 KiB
import requests
|
|
import math
|
|
import pprint
|
|
|
|
# parse_library {{{ #
|
|
|
|
def parse_library(headers, tracks, library_stats):
|
|
"""Scans user's library for certain number of tracks to update library_stats with.
|
|
|
|
:headers: For API call.
|
|
:tracks: Number of tracks to get from user's library.
|
|
:library_stats: Dictionary containing the data mined from user's library
|
|
|
|
:returns: None
|
|
|
|
"""
|
|
# TODO: implement importing entire library with 0 as tracks param
|
|
# number of tracks to get with each call
|
|
limit = 5
|
|
# keeps track of point to get songs from
|
|
offset = 0
|
|
payload = {'limit': str(limit)}
|
|
for _ in range(0, tracks, limit):
|
|
payload['offset'] = str(offset)
|
|
saved_tracks_response = requests.get('https://api.spotify.com/v1/me/tracks', headers=headers, params=payload).json()
|
|
num_samples = offset
|
|
for track_dict in saved_tracks_response['items']:
|
|
# Track the number of samples for calculating
|
|
# audio feature averages and standard deviations on the fly
|
|
num_samples += 1
|
|
get_track_info(track_dict['track'], library_stats, num_samples)
|
|
# get_genre(headers, track_dict['track']['album']['id'])
|
|
audio_features_dict = get_audio_features(headers, track_dict['track']['id'])
|
|
for feature, feature_data in audio_features_dict.items():
|
|
update_audio_feature_stats(feature, feature_data, num_samples, library_stats)
|
|
for artist_dict in track_dict['track']['artists']:
|
|
increase_artist_count(headers, artist_dict['name'], artist_dict['id'], library_stats)
|
|
# calculates num_songs with offset + songs retrieved
|
|
library_stats['num_songs'] = offset + len(saved_tracks_response['items'])
|
|
offset += limit
|
|
calculate_genres_from_artists(headers, library_stats)
|
|
pprint.pprint(library_stats)
|
|
|
|
# }}} parse_library #
|
|
|
|
def get_audio_features(headers, track_id):
|
|
"""Returns the audio features of a soundtrack
|
|
|
|
Args:
|
|
headers: headers containing the API token
|
|
track_id: the id of the soundtrack, needed to query the Spotify API
|
|
|
|
Returns:
|
|
A dictionary with the features as its keys
|
|
"""
|
|
|
|
response = requests.get("https://api.spotify.com/v1/audio-features/{}".format(track_id), headers = headers).json()
|
|
features_dict = {}
|
|
|
|
# Data that we don't need
|
|
useless_keys = [
|
|
"key", "mode", "type", "liveness", "id", "uri", "track_href", "analysis_url", "time_signature",
|
|
]
|
|
for key, val in response.items():
|
|
if key not in useless_keys:
|
|
features_dict[key] = val
|
|
|
|
return features_dict
|
|
|
|
|
|
def update_std_dev(cur_mean, cur_std_dev, new_data_point, sample_size):
|
|
"""Calculates the standard deviation for a sample without storing all data points
|
|
|
|
Args:
|
|
cur_mean: the current mean for N = (sample_size - 1)
|
|
cur_std_dev: the current standard deviation for N = (sample_size - 1)
|
|
new_data_point: a new data point
|
|
sample_size: sample size including the new data point
|
|
|
|
Returns:
|
|
(new_mean, new_std_dev)
|
|
"""
|
|
# This is an implementation of Welford's method
|
|
# http://jonisalonen.com/2013/deriving-welfords-method-for-computing-variance/
|
|
new_mean = ((sample_size - 1) * cur_mean + new_data_point) / sample_size
|
|
delta_variance = (new_data_point - new_mean) * (new_data_point - cur_mean)
|
|
new_std_dev = math.sqrt(
|
|
(math.pow(cur_std_dev, 2) * (sample_size - 2) + delta_variance) / (
|
|
sample_size - 1
|
|
))
|
|
return new_mean, new_std_dev
|
|
|
|
|
|
def update_audio_feature_stats(feature, new_data_point, sample_size, library_stats):
|
|
"""Updates the audio feature statistics in library_stats
|
|
|
|
Args:
|
|
feature: the audio feature to be updated (string)
|
|
new_data_point: new data to update the stats with
|
|
sample_size: sample size including the new data point
|
|
library_stats Dictionary containing the data mined from user's Spotify library
|
|
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
# first time the feature is considered
|
|
if sample_size < 2:
|
|
library_stats['audio_features'][feature] = {
|
|
"average": new_data_point,
|
|
"std_dev": 0,
|
|
}
|
|
else:
|
|
cur_mean = library_stats['audio_features'][feature]['average']
|
|
cur_std_dev = library_stats['audio_features'][feature]['std_dev']
|
|
new_mean, new_std_dev = update_std_dev(cur_mean, cur_std_dev, new_data_point, sample_size)
|
|
|
|
library_stats['audio_features'][feature] = {
|
|
"average": new_mean,
|
|
"std_dev": new_std_dev
|
|
}
|
|
|
|
|
|
# increase_nested_key {{{ #
|
|
|
|
def increase_nested_key(top_key, nested_key, library_stats, amount=1):
|
|
"""Increases count for the value of library_stats[top_key][nested_key]. Checks if nested_key exists already and takes
|
|
appropriate action.
|
|
|
|
:top_key: First key of library_stats.
|
|
:nested_key: Key in top_key's dict for which we want to increase value of.
|
|
:library_stats: Dictionary containing the data mined from user's Spotify library
|
|
|
|
:returns: None
|
|
|
|
"""
|
|
if nested_key not in library_stats[top_key]:
|
|
library_stats[top_key][nested_key] = amount
|
|
else:
|
|
library_stats[top_key][nested_key] += amount
|
|
|
|
# }}} increase_nested_key #
|
|
|
|
# increase_artist_count {{{ #
|
|
|
|
def increase_artist_count(headers, artist_name, artist_id, library_stats):
|
|
"""Increases count for artist in library_stats and stores the artist_id.
|
|
|
|
:headers: For making the API call.
|
|
:artist_name: Artist to increase count for.
|
|
:artist_id: The Spotify ID for the artist.
|
|
:library_stats: Dictionary containing the data mined from user's Spotify library
|
|
|
|
:returns: None
|
|
|
|
"""
|
|
if artist_name not in library_stats['artists']:
|
|
library_stats['artists'][artist_name] = {}
|
|
library_stats['artists'][artist_name]['count'] = 1
|
|
library_stats['artists'][artist_name]['id'] = artist_id
|
|
else:
|
|
library_stats['artists'][artist_name]['count'] += 1
|
|
|
|
# }}} increase_artist_count #
|
|
|
|
def update_popularity_stats(new_data_point, library_stats, sample_size):
|
|
"""Updates the popularity statistics in library_stats
|
|
|
|
Args:
|
|
new_data_point: new data to update the popularity stats with
|
|
library_stats: Dictionary containing data mined from user's Spotify library
|
|
sample_size: The sample size including the new data
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
if sample_size < 2:
|
|
library_stats['popularity'] = {
|
|
"average": new_data_point,
|
|
"std_dev": 0,
|
|
}
|
|
else :
|
|
cur_mean_popularity = library_stats['popularity']['average']
|
|
cur_popularity_stdev = library_stats['popularity']['std_dev']
|
|
new_mean, new_std_dev = update_std_dev(
|
|
cur_mean_popularity, cur_popularity_stdev, new_data_point, sample_size)
|
|
library_stats['popularity'] = {
|
|
"average": new_mean,
|
|
"std_dev": new_std_dev,
|
|
}
|
|
|
|
# get_track_info {{{ #
|
|
|
|
def get_track_info(track_dict, library_stats, sample_size):
|
|
"""Get all the info from the track_dict directly returned by the API call in parse_library.
|
|
|
|
:track_dict: Dict returned from the API call containing the track info.
|
|
:library_stats: Dictionary containing the data mined from user's Spotify library
|
|
:sample_size: The sample size so far including this track
|
|
|
|
:returns: None
|
|
|
|
"""
|
|
# popularity
|
|
update_popularity_stats(track_dict['popularity'], library_stats, sample_size)
|
|
|
|
# year
|
|
year_released = track_dict['album']['release_date'].split('-')[0]
|
|
increase_nested_key('year_released', year_released, library_stats)
|
|
|
|
# artist
|
|
# artist_names = [artist['name'] for artist in track_dict['artists']]
|
|
# for artist_name in artist_names:
|
|
# increase_nested_key('artists', artist_name)
|
|
|
|
# runtime
|
|
library_stats['total_runtime'] += float(track_dict['duration_ms']) / (1000 * 60)
|
|
|
|
# }}} get_track_info #
|
|
|
|
# calculate_genres_from_artists {{{ #
|
|
|
|
def calculate_genres_from_artists(headers, library_stats):
|
|
"""Tallies up genre counts based on artists in library_stats.
|
|
|
|
:headers: For making the API call.
|
|
:library_stats: Dictionary containing the data mined from user's Spotify library
|
|
|
|
:returns: None
|
|
|
|
"""
|
|
for artist_entry in library_stats['artists'].values():
|
|
artist_response = requests.get('https://api.spotify.com/v1/artists/' + artist_entry['id'], headers=headers).json()
|
|
# increase each genre count by artist count
|
|
for genre in artist_response['genres']:
|
|
increase_nested_key('genres', genre, library_stats, artist_entry['count'])
|
|
|
|
# }}} calculate_genres_from_artists #
|
|
|
|
def process_library_stats(library_stats):
|
|
"""Processes library_stats into format more suitable for D3 consumption
|
|
|
|
Args:
|
|
library_stats: Dictionary containing the data mined from user's Spotify library
|
|
|
|
Returns:
|
|
A new dictionary that contains the data in library_stats, in a format more suitable for D3 consumption
|
|
"""
|
|
processed_library_stats = {}
|
|
for key in library_stats:
|
|
if key == 'artists' or key == 'genres' or key == 'year_released':
|
|
for inner_key in library_stats[key]:
|
|
if key not in processed_library_stats:
|
|
processed_library_stats[key] = []
|
|
processed_item_key = '' # identifier key for each dict in the list
|
|
count = 0
|
|
if 'artist' in key:
|
|
processed_item_key = 'name'
|
|
count = library_stats[key][inner_key]['count']
|
|
elif 'genre' in key:
|
|
processed_item_key = 'genre'
|
|
count = library_stats[key][inner_key]
|
|
else:
|
|
processed_item_key = 'year'
|
|
count = library_stats[key][inner_key]
|
|
|
|
processed_library_stats[key].append({
|
|
processed_item_key: inner_key,
|
|
"count": count
|
|
})
|
|
elif key == 'audio_features':
|
|
for audio_feature in library_stats[key]:
|
|
if 'audio_features' not in processed_library_stats:
|
|
processed_library_stats['audio_features'] = []
|
|
processed_library_stats['audio_features'].append({
|
|
'feature': audio_feature,
|
|
'average': library_stats[key][audio_feature]['average'],
|
|
'std_dev': library_stats[key][audio_feature]['std_dev']
|
|
})
|
|
# TODO: Not sure about final form for 'popularity'
|
|
# elif key == 'popularity':
|
|
# processed_library_stats[key] = []
|
|
# processed_library_stats[key].append({
|
|
|
|
# })
|
|
elif key == 'num_songs' or key == 'total_runtime' or key == 'popularity':
|
|
processed_library_stats[key] = library_stats[key]
|
|
|
|
return processed_library_stats
|