Graphs and tables for your Spotify account.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

338 lines
11 KiB

from django.shortcuts import render, redirect
from django.http import HttpResponse, HttpResponseBadRequest
import math
import random
import requests
import os
import urllib
import json
import pprint
from datetime import datetime
TIME_FORMAT = '%Y-%m-%d-%H-%M-%S'
library_stats = {"audio_features":{}, "genres":{}, "year_released":{}, "artists":{}, "num_songs":0, "popularity":[], "total_runtime":0}
# generate_random_string {{{ #
def generate_random_string(length):
"""Generates a random string of a certain length
Args:
length: the desired length of the randomized string
Returns:
A random string
"""
rand_str = ""
possible_chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
for _ in range(length):
rand_str += possible_chars[random.randint(0, len(possible_chars) - 1)]
return rand_str
# }}} generate_random_string #
# token_expired {{{ #
def token_expired(token_obtained_at, valid_for):
"""Returns True if token expired, False if otherwise
Args:
token_obtained_at: datetime object representing the date and time when the token was obtained
valid_for: the time duration for which the token is valid, in seconds
"""
time_elapsed = (datetime.today() - token_obtained_at).total_seconds()
return time_elapsed >= valid_for
# }}} token_expired #
# index {{{ #
# Create your views here.
def index(request):
return render(request, 'spotifyvis/index.html')
# }}} index #
# login {{{ #
def login(request):
# use a randomly generated state string to prevent cross-site request forgery attacks
state_str = generate_random_string(16)
request.session['state_string'] = state_str
payload = {
'client_id': os.environ['SPOTIFY_CLIENT_ID'],
'response_type': 'code',
'redirect_uri': 'http://localhost:8000/callback',
'state': state_str,
'scope': 'user-library-read',
'show_dialog': False
}
params = urllib.parse.urlencode(payload) # turn the payload dict into a query string
authorize_url = "https://accounts.spotify.com/authorize/?{}".format(params)
return redirect(authorize_url)
# }}} login #
# callback {{{ #
def callback(request):
# Attempt to retrieve the authorization code from the query string
try:
code = request.GET['code']
except KeyError:
return HttpResponseBadRequest("<h1>Problem with login</h1>")
payload = {
'grant_type': 'authorization_code',
'code': code,
'redirect_uri': 'http://localhost:8000/callback',
'client_id': os.environ['SPOTIFY_CLIENT_ID'],
'client_secret': os.environ['SPOTIFY_CLIENT_SECRET'],
}
response = requests.post('https://accounts.spotify.com/api/token', data = payload).json()
# despite its name, datetime.today() returns a datetime object, not a date object
# use datetime.strptime() to get a datetime object from a string
request.session['token_obtained_at'] = datetime.strftime(datetime.today(), TIME_FORMAT)
request.session['access_token'] = response['access_token']
request.session['refresh_token'] = response['refresh_token']
request.session['valid_for'] = response['expires_in']
# print(response)
return redirect('user_data')
# }}} callback #
# user_data {{{ #
def user_data(request):
token_obtained_at = datetime.strptime(request.session['token_obtained_at'], TIME_FORMAT)
valid_for = int(request.session['valid_for'])
if token_expired(token_obtained_at, valid_for):
req_body = {
'grant_type': 'refresh_token',
'refresh_token': request.session['refresh_token'],
'client_id': os.environ['SPOTIFY_CLIENT_ID'],
'client_secret': os.environ['SPOTIFY_CLIENT_SECRET']
}
refresh_token_response = requests.post('https://accounts.spotify.com/api/token', data = req_body).json()
request.session['access_token'] = refresh_token_response['access_token']
request.session['valid_for'] = refresh_token_response['expires_in']
auth_token_str = "Bearer " + request.session['access_token']
headers = {
'Authorization': auth_token_str
}
user_data_response = requests.get('https://api.spotify.com/v1/me', headers = headers).json()
context = {
'user_name': user_data_response['display_name'],
'id': user_data_response['id'],
}
tracks_to_query = 5
parse_library(headers, tracks_to_query)
return render(request, 'spotifyvis/user_data.html', context)
# }}} user_data #
# parse_library {{{ #
def parse_library(headers, tracks):
"""Scans user's library for certain number of tracks to update library_stats with.
:headers: For API call.
:tracks: Number of tracks to get from user's library.
:returns: None
"""
# TODO: implement importing entire library with 0 as tracks param
# number of tracks to get with each call
limit = 5
# keeps track of point to get songs from
offset = 0
payload = {'limit': str(limit)}
for _ in range(0, tracks, limit):
payload['offset'] = str(offset)
saved_tracks_response = requests.get('https://api.spotify.com/v1/me/tracks', headers=headers, params=payload).json()
num_samples = offset
for track_dict in saved_tracks_response['items']:
# Track the number of samples for calculating
# audio feature averages and standard deviations on the fly
num_samples += 1
get_track_info(track_dict['track'])
# get_genre(headers, track_dict['track']['album']['id'])
audio_features_dict = get_audio_features(headers, track_dict['track']['id'])
for feature, feature_data in audio_features_dict.items():
update_audio_feature_stats(feature, feature_data, num_samples)
for artist_dict in track_dict['track']['artists']:
increase_artist_count(headers, artist_dict['name'], artist_dict['id'])
# calculates num_songs with offset + songs retrieved
library_stats['num_songs'] = offset + len(saved_tracks_response['items'])
offset += limit
calculate_genres_from_artists(headers)
pprint.pprint(library_stats)
# }}} parse_library #
def get_audio_features(headers, track_id):
"""Returns the audio features of a soundtrack
Args:
headers: headers containing the API token
track_id: the id of the soundtrack, needed to query the Spotify API
Returns:
A dictionary with the features as its keys
"""
response = requests.get("https://api.spotify.com/v1/audio-features/{}".format(track_id), headers = headers).json()
features_dict = {}
# Data that we don't need
useless_keys = [
"key", "mode", "type", "liveness", "id", "uri", "track_href", "analysis_url", "time_signature",
]
for key, val in response.items():
if key not in useless_keys:
features_dict[key] = val
return features_dict
def update_std_dev(cur_mean, cur_std_dev, new_data_point, sample_size):
"""Calculates the standard deviation for a sample without storing all data points
Args:
cur_mean: the current mean for N = (sample_size - 1)
cur_std_dev: the current standard deviation for N = (sample_size - 1)
new_data_point: a new data point
sample_size: sample size including the new data point
Returns:
(new_mean, new_std_dev)
"""
# This is an implementationof Welford's method
# http://jonisalonen.com/2013/deriving-welfords-method-for-computing-variance/
new_mean = ((sample_size - 1) * cur_mean + new_data_point) / sample_size
delta_variance = (new_data_point - new_mean) * (new_data_point - cur_mean)
new_std_dev = math.sqrt(
(math.pow(cur_std_dev, 2) * (sample_size - 2) + delta_variance) / (
sample_size - 1
))
return new_mean, new_std_dev
def update_audio_feature_stats(feature, new_data_point, sample_size):
"""Updates the audio feature statistics in library_stats
Args:
feature: the audio feature to be updated (string)
new_data_point: new data to update the stats with
sample_size: sample size including the new data point
Returns:
None
"""
# first time the feature is considered
if sample_size < 2:
library_stats['audio_features'][feature] = {
"average": new_data_point,
"std_dev": 0,
}
else:
cur_mean = library_stats['audio_features'][feature]['average']
cur_std_dev = library_stats['audio_features'][feature]['std_dev']
new_mean, new_std_dev = update_std_dev(cur_mean, cur_std_dev, new_data_point, sample_size)
library_stats['audio_features'][feature]['average'] = new_mean
library_stats['audio_features'][feature]['std_dev'] = new_std_dev
# increase_nested_key {{{ #
def increase_nested_key(top_key, nested_key, amount=1):
"""Increases count for the value of library_stats[top_key][nested_key]. Checks if nested_key exists already and takes
appropriate action.
:top_key: First key of library_stats.
:nested_key: Key in top_key's dict for which we want to increase value of.
:returns: None
"""
if nested_key not in library_stats[top_key]:
library_stats[top_key][nested_key] = amount
else:
library_stats[top_key][nested_key] += amount
# }}} increase_nested_key #
# increase_artist_count {{{ #
def increase_artist_count(headers, artist_name, artist_id):
"""Increases count for artist in library_stats and stores the artist_id.
:headers: For making the API call.
:artist_name: Artist to increase count for.
:artist_id: The Spotify ID for the artist.
:returns: None
"""
if artist_name not in library_stats['artists']:
library_stats['artists'][artist_name] = {}
library_stats['artists'][artist_name]['count'] = 1
library_stats['artists'][artist_name]['id'] = artist_id
else:
library_stats['artists'][artist_name]['count'] += 1
# }}} increase_artist_count #
# get_track_info {{{ #
def get_track_info(track_dict):
"""Get all the info from the track_dict directly returned by the API call in parse_library.
:track_dict: Dict returned from the API call containing the track info.
:returns: None
"""
# popularity
library_stats['popularity'].append(track_dict['popularity'])
# year
year_released = track_dict['album']['release_date'].split('-')[0]
increase_nested_key('year_released', year_released)
# artist
# artist_names = [artist['name'] for artist in track_dict['artists']]
# for artist_name in artist_names:
# increase_nested_key('artists', artist_name)
# runtime
library_stats['total_runtime'] += float(track_dict['duration_ms']) / 60
# }}} get_track_info #
# calculate_genres_from_artists {{{ #
def calculate_genres_from_artists(headers):
"""Tallies up genre counts based on artists in library_stats.
:headers: For making the API call.
:returns: None
"""
for artist_entry in library_stats['artists'].values():
artist_response = requests.get('https://api.spotify.com/v1/artists/' + artist_entry['id'], headers=headers).json()
# increase each genre count by artist count
for genre in artist_response['genres']:
increase_nested_key('genres', genre, artist_entry['count'])
# }}} calculate_genres_from_artists #