Implement audio feature statistics calculation
Implemented the calculation average and standard deviation of audio features.
This commit is contained in:
@@ -168,11 +168,12 @@ def get_audio_features(track_id, headers):
|
||||
return features_dict
|
||||
|
||||
|
||||
def update_std_dev(cur_mean, new_data_point, sample_size):
|
||||
def update_std_dev(cur_mean, cur_std_dev, new_data_point, sample_size):
|
||||
"""Calculates the standard deviation for a sample without storing all data points
|
||||
|
||||
Args:
|
||||
cur_mean: the current mean for N = (sample_size - 1)
|
||||
cur_std_dev: the current standard deviation for N = (sample_size - 1)
|
||||
new_data_point: a new data point
|
||||
sample_size: sample size including the new data point
|
||||
|
||||
@@ -182,8 +183,12 @@ def update_std_dev(cur_mean, new_data_point, sample_size):
|
||||
# This is an implementationof Welford's method
|
||||
# http://jonisalonen.com/2013/deriving-welfords-method-for-computing-variance/
|
||||
new_mean = ((sample_size - 1) * cur_mean + new_data_point) / sample_size
|
||||
std_dev = (new_data_point - new_mean) * (new_data_point - cur_mean)
|
||||
return new_mean, std_dev
|
||||
delta_variance = (new_data_point - new_mean) * (new_data_point - cur_mean)
|
||||
new_std_dev = math.sqrt(
|
||||
(math.pow(cur_std_dev, 2) * (sample_size - 2) + delta_variance) / (
|
||||
sample_size - 1
|
||||
))
|
||||
return new_mean, new_std_dev
|
||||
|
||||
|
||||
def update_audio_feature_stats(feature, new_data_point, sample_size):
|
||||
@@ -203,13 +208,13 @@ def update_audio_feature_stats(feature, new_data_point, sample_size):
|
||||
"average": new_data_point,
|
||||
"std_dev": 0,
|
||||
}
|
||||
|
||||
else:
|
||||
current_mean = library_stats['audio_features'][feature]['average']
|
||||
updated_mean, std_dev = update_std_dev(current_mean, new_data_point, sample_size)
|
||||
cur_std_dev = library_stats['audio_features'][feature]['std_dev']
|
||||
updated_mean, new_std_dev = update_std_dev(current_mean, cur_std_dev, new_data_point, sample_size)
|
||||
|
||||
library_stats['audio_features'][feature]['average'] = updated_mean
|
||||
library_stats['audio_features'][feature]['std_dev'] = std_dev
|
||||
library_stats['audio_features'][feature]['std_dev'] = new_std_dev
|
||||
|
||||
|
||||
# parse_library {{{ #
|
||||
@@ -228,12 +233,19 @@ def parse_library(headers, tracks):
|
||||
# keeps track of point to get songs from
|
||||
offset = 0
|
||||
payload = {'limit': str(limit)}
|
||||
for i in range(0, tracks, limit):
|
||||
for _ in range(0, tracks, limit):
|
||||
payload['offset'] = str(offset)
|
||||
saved_tracks_response = requests.get('https://api.spotify.com/v1/me/tracks', headers=headers, params=payload).json()
|
||||
num_samples = offset
|
||||
for track_dict in saved_tracks_response['items']:
|
||||
# Track the number of samples for calculating
|
||||
# audio feature averages and standard deviations on the fly
|
||||
num_samples += 1
|
||||
get_track_info(track_dict['track'])
|
||||
# get_genre(headers, track_dict['track']['album']['id'])
|
||||
audio_features_dict = get_audio_features(track_dict['id'], headers)
|
||||
for feature, feature_data in audio_features_dict.items():
|
||||
update_audio_feature_stats(feature, feature_data, num_samples)
|
||||
for artist_dict in track_dict['track']['artists']:
|
||||
increase_artist_count(headers, artist_dict['name'], artist_dict['id'])
|
||||
# calculates num_songs with offset + songs retrieved
|
||||
|
||||
Reference in New Issue
Block a user