Made minor changes to variable names
This commit is contained in:
@@ -143,80 +143,6 @@ def user_data(request):
|
|||||||
|
|
||||||
# }}} user_data #
|
# }}} user_data #
|
||||||
|
|
||||||
def get_audio_features(track_id, headers):
|
|
||||||
"""Returns the audio features of a soundtrack
|
|
||||||
|
|
||||||
Args:
|
|
||||||
track_id: the id of the soundtrack, needed to query the Spotify API
|
|
||||||
headers: headers containing the API token
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
A dictionary with the features as its keys
|
|
||||||
"""
|
|
||||||
|
|
||||||
response = requests.get("https://api.spotify.com/v1/audio-features/{}".format(track_id), headers = headers).json()
|
|
||||||
features_dict = {}
|
|
||||||
|
|
||||||
# Data that we don't need
|
|
||||||
useless_keys = [
|
|
||||||
"key", "mode", "type", "liveness", "id", "uri", "track_href", "analysis_url", "time_signature",
|
|
||||||
]
|
|
||||||
for key, val in response.items():
|
|
||||||
if key not in useless_keys:
|
|
||||||
features_dict[key] = val
|
|
||||||
|
|
||||||
return features_dict
|
|
||||||
|
|
||||||
|
|
||||||
def update_std_dev(cur_mean, cur_std_dev, new_data_point, sample_size):
|
|
||||||
"""Calculates the standard deviation for a sample without storing all data points
|
|
||||||
|
|
||||||
Args:
|
|
||||||
cur_mean: the current mean for N = (sample_size - 1)
|
|
||||||
cur_std_dev: the current standard deviation for N = (sample_size - 1)
|
|
||||||
new_data_point: a new data point
|
|
||||||
sample_size: sample size including the new data point
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
(updated_mean, std_dev)
|
|
||||||
"""
|
|
||||||
# This is an implementationof Welford's method
|
|
||||||
# http://jonisalonen.com/2013/deriving-welfords-method-for-computing-variance/
|
|
||||||
new_mean = ((sample_size - 1) * cur_mean + new_data_point) / sample_size
|
|
||||||
delta_variance = (new_data_point - new_mean) * (new_data_point - cur_mean)
|
|
||||||
new_std_dev = math.sqrt(
|
|
||||||
(math.pow(cur_std_dev, 2) * (sample_size - 2) + delta_variance) / (
|
|
||||||
sample_size - 1
|
|
||||||
))
|
|
||||||
return new_mean, new_std_dev
|
|
||||||
|
|
||||||
|
|
||||||
def update_audio_feature_stats(feature, new_data_point, sample_size):
|
|
||||||
"""Updates the audio feature statistics in library_stats
|
|
||||||
|
|
||||||
Args:
|
|
||||||
feature: the audio feature to be updated (string)
|
|
||||||
new_data_point: new data to update the stats with
|
|
||||||
sample_size: sample size including the new data point
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
None
|
|
||||||
"""
|
|
||||||
# first time the feature is considered
|
|
||||||
if sample_size < 2:
|
|
||||||
library_stats['audio_features'][feature] = {
|
|
||||||
"average": new_data_point,
|
|
||||||
"std_dev": 0,
|
|
||||||
}
|
|
||||||
else:
|
|
||||||
current_mean = library_stats['audio_features'][feature]['average']
|
|
||||||
cur_std_dev = library_stats['audio_features'][feature]['std_dev']
|
|
||||||
updated_mean, new_std_dev = update_std_dev(current_mean, cur_std_dev, new_data_point, sample_size)
|
|
||||||
|
|
||||||
library_stats['audio_features'][feature]['average'] = updated_mean
|
|
||||||
library_stats['audio_features'][feature]['std_dev'] = new_std_dev
|
|
||||||
|
|
||||||
|
|
||||||
# parse_library {{{ #
|
# parse_library {{{ #
|
||||||
|
|
||||||
def parse_library(headers, tracks):
|
def parse_library(headers, tracks):
|
||||||
@@ -256,6 +182,80 @@ def parse_library(headers, tracks):
|
|||||||
|
|
||||||
# }}} parse_library #
|
# }}} parse_library #
|
||||||
|
|
||||||
|
def get_audio_features(track_id, headers):
|
||||||
|
"""Returns the audio features of a soundtrack
|
||||||
|
|
||||||
|
Args:
|
||||||
|
track_id: the id of the soundtrack, needed to query the Spotify API
|
||||||
|
headers: headers containing the API token
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A dictionary with the features as its keys
|
||||||
|
"""
|
||||||
|
|
||||||
|
response = requests.get("https://api.spotify.com/v1/audio-features/{}".format(track_id), headers = headers).json()
|
||||||
|
features_dict = {}
|
||||||
|
|
||||||
|
# Data that we don't need
|
||||||
|
useless_keys = [
|
||||||
|
"key", "mode", "type", "liveness", "id", "uri", "track_href", "analysis_url", "time_signature",
|
||||||
|
]
|
||||||
|
for key, val in response.items():
|
||||||
|
if key not in useless_keys:
|
||||||
|
features_dict[key] = val
|
||||||
|
|
||||||
|
return features_dict
|
||||||
|
|
||||||
|
|
||||||
|
def update_std_dev(cur_mean, cur_std_dev, new_data_point, sample_size):
|
||||||
|
"""Calculates the standard deviation for a sample without storing all data points
|
||||||
|
|
||||||
|
Args:
|
||||||
|
cur_mean: the current mean for N = (sample_size - 1)
|
||||||
|
cur_std_dev: the current standard deviation for N = (sample_size - 1)
|
||||||
|
new_data_point: a new data point
|
||||||
|
sample_size: sample size including the new data point
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
(new_mean, new_std_dev)
|
||||||
|
"""
|
||||||
|
# This is an implementationof Welford's method
|
||||||
|
# http://jonisalonen.com/2013/deriving-welfords-method-for-computing-variance/
|
||||||
|
new_mean = ((sample_size - 1) * cur_mean + new_data_point) / sample_size
|
||||||
|
delta_variance = (new_data_point - new_mean) * (new_data_point - cur_mean)
|
||||||
|
new_std_dev = math.sqrt(
|
||||||
|
(math.pow(cur_std_dev, 2) * (sample_size - 2) + delta_variance) / (
|
||||||
|
sample_size - 1
|
||||||
|
))
|
||||||
|
return new_mean, new_std_dev
|
||||||
|
|
||||||
|
|
||||||
|
def update_audio_feature_stats(feature, new_data_point, sample_size):
|
||||||
|
"""Updates the audio feature statistics in library_stats
|
||||||
|
|
||||||
|
Args:
|
||||||
|
feature: the audio feature to be updated (string)
|
||||||
|
new_data_point: new data to update the stats with
|
||||||
|
sample_size: sample size including the new data point
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
None
|
||||||
|
"""
|
||||||
|
# first time the feature is considered
|
||||||
|
if sample_size < 2:
|
||||||
|
library_stats['audio_features'][feature] = {
|
||||||
|
"average": new_data_point,
|
||||||
|
"std_dev": 0,
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
cur_mean = library_stats['audio_features'][feature]['average']
|
||||||
|
cur_std_dev = library_stats['audio_features'][feature]['std_dev']
|
||||||
|
new_mean, new_std_dev = update_std_dev(cur_mean, cur_std_dev, new_data_point, sample_size)
|
||||||
|
|
||||||
|
library_stats['audio_features'][feature]['average'] = new_mean
|
||||||
|
library_stats['audio_features'][feature]['std_dev'] = new_std_dev
|
||||||
|
|
||||||
|
|
||||||
# increase_nested_key {{{ #
|
# increase_nested_key {{{ #
|
||||||
|
|
||||||
def increase_nested_key(top_key, nested_key, amount=1):
|
def increase_nested_key(top_key, nested_key, amount=1):
|
||||||
|
|||||||
Reference in New Issue
Block a user