Made minor changes to variable names
This commit is contained in:
@@ -143,80 +143,6 @@ def user_data(request):
|
||||
|
||||
# }}} user_data #
|
||||
|
||||
def get_audio_features(track_id, headers):
|
||||
"""Returns the audio features of a soundtrack
|
||||
|
||||
Args:
|
||||
track_id: the id of the soundtrack, needed to query the Spotify API
|
||||
headers: headers containing the API token
|
||||
|
||||
Returns:
|
||||
A dictionary with the features as its keys
|
||||
"""
|
||||
|
||||
response = requests.get("https://api.spotify.com/v1/audio-features/{}".format(track_id), headers = headers).json()
|
||||
features_dict = {}
|
||||
|
||||
# Data that we don't need
|
||||
useless_keys = [
|
||||
"key", "mode", "type", "liveness", "id", "uri", "track_href", "analysis_url", "time_signature",
|
||||
]
|
||||
for key, val in response.items():
|
||||
if key not in useless_keys:
|
||||
features_dict[key] = val
|
||||
|
||||
return features_dict
|
||||
|
||||
|
||||
def update_std_dev(cur_mean, cur_std_dev, new_data_point, sample_size):
|
||||
"""Calculates the standard deviation for a sample without storing all data points
|
||||
|
||||
Args:
|
||||
cur_mean: the current mean for N = (sample_size - 1)
|
||||
cur_std_dev: the current standard deviation for N = (sample_size - 1)
|
||||
new_data_point: a new data point
|
||||
sample_size: sample size including the new data point
|
||||
|
||||
Returns:
|
||||
(updated_mean, std_dev)
|
||||
"""
|
||||
# This is an implementationof Welford's method
|
||||
# http://jonisalonen.com/2013/deriving-welfords-method-for-computing-variance/
|
||||
new_mean = ((sample_size - 1) * cur_mean + new_data_point) / sample_size
|
||||
delta_variance = (new_data_point - new_mean) * (new_data_point - cur_mean)
|
||||
new_std_dev = math.sqrt(
|
||||
(math.pow(cur_std_dev, 2) * (sample_size - 2) + delta_variance) / (
|
||||
sample_size - 1
|
||||
))
|
||||
return new_mean, new_std_dev
|
||||
|
||||
|
||||
def update_audio_feature_stats(feature, new_data_point, sample_size):
|
||||
"""Updates the audio feature statistics in library_stats
|
||||
|
||||
Args:
|
||||
feature: the audio feature to be updated (string)
|
||||
new_data_point: new data to update the stats with
|
||||
sample_size: sample size including the new data point
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
# first time the feature is considered
|
||||
if sample_size < 2:
|
||||
library_stats['audio_features'][feature] = {
|
||||
"average": new_data_point,
|
||||
"std_dev": 0,
|
||||
}
|
||||
else:
|
||||
current_mean = library_stats['audio_features'][feature]['average']
|
||||
cur_std_dev = library_stats['audio_features'][feature]['std_dev']
|
||||
updated_mean, new_std_dev = update_std_dev(current_mean, cur_std_dev, new_data_point, sample_size)
|
||||
|
||||
library_stats['audio_features'][feature]['average'] = updated_mean
|
||||
library_stats['audio_features'][feature]['std_dev'] = new_std_dev
|
||||
|
||||
|
||||
# parse_library {{{ #
|
||||
|
||||
def parse_library(headers, tracks):
|
||||
@@ -256,6 +182,80 @@ def parse_library(headers, tracks):
|
||||
|
||||
# }}} parse_library #
|
||||
|
||||
def get_audio_features(track_id, headers):
|
||||
"""Returns the audio features of a soundtrack
|
||||
|
||||
Args:
|
||||
track_id: the id of the soundtrack, needed to query the Spotify API
|
||||
headers: headers containing the API token
|
||||
|
||||
Returns:
|
||||
A dictionary with the features as its keys
|
||||
"""
|
||||
|
||||
response = requests.get("https://api.spotify.com/v1/audio-features/{}".format(track_id), headers = headers).json()
|
||||
features_dict = {}
|
||||
|
||||
# Data that we don't need
|
||||
useless_keys = [
|
||||
"key", "mode", "type", "liveness", "id", "uri", "track_href", "analysis_url", "time_signature",
|
||||
]
|
||||
for key, val in response.items():
|
||||
if key not in useless_keys:
|
||||
features_dict[key] = val
|
||||
|
||||
return features_dict
|
||||
|
||||
|
||||
def update_std_dev(cur_mean, cur_std_dev, new_data_point, sample_size):
|
||||
"""Calculates the standard deviation for a sample without storing all data points
|
||||
|
||||
Args:
|
||||
cur_mean: the current mean for N = (sample_size - 1)
|
||||
cur_std_dev: the current standard deviation for N = (sample_size - 1)
|
||||
new_data_point: a new data point
|
||||
sample_size: sample size including the new data point
|
||||
|
||||
Returns:
|
||||
(new_mean, new_std_dev)
|
||||
"""
|
||||
# This is an implementationof Welford's method
|
||||
# http://jonisalonen.com/2013/deriving-welfords-method-for-computing-variance/
|
||||
new_mean = ((sample_size - 1) * cur_mean + new_data_point) / sample_size
|
||||
delta_variance = (new_data_point - new_mean) * (new_data_point - cur_mean)
|
||||
new_std_dev = math.sqrt(
|
||||
(math.pow(cur_std_dev, 2) * (sample_size - 2) + delta_variance) / (
|
||||
sample_size - 1
|
||||
))
|
||||
return new_mean, new_std_dev
|
||||
|
||||
|
||||
def update_audio_feature_stats(feature, new_data_point, sample_size):
|
||||
"""Updates the audio feature statistics in library_stats
|
||||
|
||||
Args:
|
||||
feature: the audio feature to be updated (string)
|
||||
new_data_point: new data to update the stats with
|
||||
sample_size: sample size including the new data point
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
# first time the feature is considered
|
||||
if sample_size < 2:
|
||||
library_stats['audio_features'][feature] = {
|
||||
"average": new_data_point,
|
||||
"std_dev": 0,
|
||||
}
|
||||
else:
|
||||
cur_mean = library_stats['audio_features'][feature]['average']
|
||||
cur_std_dev = library_stats['audio_features'][feature]['std_dev']
|
||||
new_mean, new_std_dev = update_std_dev(cur_mean, cur_std_dev, new_data_point, sample_size)
|
||||
|
||||
library_stats['audio_features'][feature]['average'] = new_mean
|
||||
library_stats['audio_features'][feature]['std_dev'] = new_std_dev
|
||||
|
||||
|
||||
# increase_nested_key {{{ #
|
||||
|
||||
def increase_nested_key(top_key, nested_key, amount=1):
|
||||
|
||||
Reference in New Issue
Block a user